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ABSTRACT

This report describes the first stage in solving the structure from motion prob-
lem, which is to detect feature points and track them from frame to frame. A
number of detectors from the literature, as well as some specially developed
detectors, are assessed using a fly-over sequence of Parafield control tower. It
is found by this measure that the Harris detector is the best of the conven-
tional detectors, and that two new detectors (the Generalised Hough transform
and covariance tracking based methods) appear to give even better results for
many cases. Finally, a method for detecting corners by fusing the outputs of
numerous detectors is described.
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Detection and Tracking of Corner Points for Structure from
Motion

EXECUTIVE SUMMARY

The motivating problem behind this report is to extract a 3D structure from motion
based on a video sequence of a building from an airborne sensor. This has application
to site monitoring and surveillance, targeting and operations planning. Structure from
motion problems have been studied for some time, and the established methods of solution
usually consist of four major steps. The first step is to extract useful features (points, lines,
or planes) from each of the images. Then, each of the features is tracked throughout the
image sequence. Following this, a 3D model and camera motion model are determined
which are consistent with the measured feature positions. Finally, high level information
about the scene (such as the general structure of buildings usually consisting of plane
facets intersecting perpendicularly) is used to refine the model.

The current report describes aspects of the first two steps in structure from motion;
specifically, the detection and tracking of point features.

As an aid to the reconstruction of a wire-frame model of a building, corner points
corresponding to the intersection of three or more building facets are the most useful. The
first section of the report extensively analyzes a large number of standard and new corner
detection techniques.

Once the features have been detected, they must be tracked between image frames.
The second half of the report provides a quick overview of tracking methods, with a focus
on those aspects of the problem which are unique to tracking features in video sequences.
One focus of this part of the report is on the relationship between trackers and feature
detectors, and this is used to create new corner detectors. Some possible methods for fusing
the outputs of corner detectors to further improve performance have also been examined.

Throughout the report, stand-alone detectors, tracking based detectors and fused de-
tectors have been described. All of these detectors have been evaluated using a thermal IR
video sequence of the Parafield airport control tower. The performance of the commonly
used detectors from the literature was found to be consistently highest for the Harris cor-
ner detector. Two new corner detectors described in this report, the Generalised Hough
Transform and the covariance tracking based detectors, were found to give better results
than the Harris detector in a number of cases. It is expected that these results will also
extend to other types of video imagery.
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1 Introduction

The aim of structure from motion is to recover a 3D model of a scene from a video
sequence taken using a moving camera. In this report, the problem is examined from
the perspective of extracting models of buildings from an airborne video sensor as in a
UAV. The particular example for which data is available is a low resolution fly-over of the
Parafield airport control tower. Although the methods described and developed in this
report are applied only to this sequence, it is hoped that they perform equally well with
other similar types of imagery.

Structure from motion problems have been studied for some time, and the established
methods of solution usually consist of four major steps. The first step is to extract useful
features (points, lines, or planes) from each of the images. Then, each of the features is
tracked throughout the image sequence. Following this, a 3D model and camera motion
model are determined which are consistent with the measured feature positions. Finally,
high level information about the scene (such as the general structure of buildings usually
consisting of plane facets intersecting perpendicularly) is used to refine the model.

The current report describes aspects of the first two steps in structure from motion;
specifically, the detection and tracking of point features. The most frequently detected
feature for most structure from motion problems are corners. Certainly, in order to recon-
struct a wire-frame model of a building, the corners corresponding to the intersection of
three or more building facets are crucial. Section 2 provides an extensive analysis of a large
number of standard and new corner detection techniques, and evaluates their capabilities
in the context of structure from motion. Lines and line segments are also useful, but have
been less extensively studied. An overview of some of the line detection techniques will be
provided in a follow-up report.

Once the features have been detected, they must be tracked between image frames.
The tracking problem has been examined in excruciating detail in the literature, but most
of the work is outside the scope of this report. Therefore, Section 3 gives only a quick
overview of some of the tracking methods, with a focus on those aspects of the problem
which are unique to tracking features in video sequences. This section tries to focus on
the relationship between trackers and feature detectors, and uses this to create new corner
detectors. Section 4 then describes methods for fusing the outputs of corner detectors to
improve performance, Some conclusions and recommendations for future work are then
summarised in Section 5.

2 Point detection

There is a great deal of literature on point detection algorithms, but in practice many
vision applications rely on the Harris detector. This uses a heuristic measurement which
increases where the image has large image gradients in two perpendicular directions. The
maximum of the Harris detector is usually not exactly on the corner, and this lack of
consistent localisation has lead to other detectors being used in some applications. A
more complete discussion of the Harris detector is given in Subsection 2.1, and Subsection
2.2 describes some similar detectors which assume that the image can be modelled by a

1
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continuous function, such as the Shi-Tomasi detector which is currently implemented in
ADSS.

Another commonly cited detector, based on a completely different approach is called
SUSAN. This detector effectively performs a local fuzzy segmentation of the points based
on their intensity, and uses the size of the segments as a measure of cornerness. A more
complete description of the SUSAN corner detector is provided in Section 2.3.

Recently, another detector called SIFT has received a lot of attention. This is specifi-
cally an interest point detector rather than a corner or junction detector. SIFT searches
for blobs in imagery using a multiscale framework. Each detected feature is also associated
with an invariant shape key, which may be used to find correspondences between features
detected in different images. A brief description of SIFT is described in 2.4.

A number of other less commonly used and some new detector algorithms are also
described. Subsection 2.5 describes the local energy detector, which was inspired by the
structure of biological vision systems. Some parallels between the local energy and the
function based prescreeners are made, and some modifications described for improving
the corner detection performance. Subsection 2.6 provides details of a new type of corner
detector based on the accumulation of evidence that a point is at the intersection of two
edges. This accumulation method is related to the computation of the Hough transform.

Having defined a large number of corner detectors, some methods are needed to eval-
uate them in the context of structure from motion. Subsection 2.7 summarises some of
the existing performance measures, and then evaluates each of the corner detectors for
their performance on the Parafield fly-over data. These performance measures are also
used later in Section 3 to assess corner detectors based on trackers, and in Section 4 which
considers fusing corner detectors to improve their performance.

2.1 The Harris detector

The Harris detector (sometimes known as the Stephen-Harris or the Plessey detector)
is probably the most widely used point detector in the vision literature. It is based on an
idea by Moravec [18], where points of interest corresponded to large intensity gradients
in all directions. To implement this, Moravec computed a local correlation between the
original image and copies of the image shifted in each of the four image directions. The
interest point was detected if the largest difference in correlation was above some threshold.
Harris and Stephens [6] extended this detector by reformulating the problem using image
derivatives. Also, a Gaussian smoothing operator was used to localise the image feature
instead of a square window. This had the advantage of making the detector insensitive to
rotation. The final detector was based on an “inspired formulation” [6], and is defined as
follows.

Let Ix, Iy be the derivatives of the image I in the x and y directions respectively. We
define three quantities gx, gy and gxy to be the images I2

x, I2
y and IxIy convolved with a zero

mean Gaussian with width σ (which is often set to 1). Then the measure of cornerness is
given by

2
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gxgy − g2
xy − α(gx + gy)

2 (1)

for some constant α. The value of α was not specified in the original paper, but later
papers have used α about 0.04 (although Schmid et al. [24] used σ = 2 and α = 0.06).
The optimal value for α has been investigated by Rockett [22], who examined the ability
of the detector to distinguish images centered on corners from ones where the corners were
shifted by a pixel from the centre (given the name ‘ non-obvious non-corners ’). Rockett
used the Harris detector to classify the data, and measured the area under the ROC curve
to determine the performance for a range of α. For σ = 1, the performance was found to
be very constant over the range α ∈ (0.04, 0.06) with the maximum occurring somewhere
in the middle.

Several papers have been published concerning evaluation of the performance of cor-
ner and interest point detectors. Rockett’s work [22] was based on simulated data sets,
containing 10, 000 instances of corners and non-corners. Most of the non-corners were
modelled by either edges or areas of roughly constant intensity. All of the examples had
been corrupted by noise, and subjected to diffraction effects and other processes designed
to mimic the entire optical imaging process. Detectors were then applied to the resulting
images, and the area under the ROC curve as the performance measure. It was found that
the Harris detector produced significantly better discrimination between corners and edges
and/or image patches than two other detectors (the Kitchen-Rosenfeld detector [11], which
is based on second order image derivatives, and the Paler detector [20], which is based on
order statistics). However, Rockett also measured the localisation accuracy which was the
area under the curve obtained for distinguishing the response centered on corners, and
where the corners were shifted by one pixel. By this measure, the Harris detector was the
worst performing detector.

An earlier paper, Schmid et al. [24], used repeatability of the detection of features
as a performance measure. This was measured by detecting points in one image frame,
and then applying an affine transformation (rotation as well as scaling), adding noise, or
varying the illumination to produce a new image. The corner detection was applied again,
and the percentage of consistent detections measured. In this way, the paper compared
five detectors (those by Harris, Cottier, Horaud, Heitger and Förstner). Of these, only the
Harris is frequently used in computational vision, although the Heitger detector [7] (which
is based on Gabor filters for finding edges in different directions, and combining the edge
images into a corner image) seems more frequently referred to for biological applications. It
was found that the Harris detector consistency gave the most repeatable set of detections.

With the aim of improving the repeatability of detections in two images differing by
an affine transformation, Mikolajczyk and Schmid [17] suggested some modifications to
the standard Harris. Scale invariance is achieved by combining two separate interest point
detectors. The first is based on the Laplacian of the Gaussian (LoG), first suggested by
Lindeberg [12] for detecting blobs (this was later refined by Lowe to become the SIFT
detector, described in Subsection 2.4). This examines the response of the image to convo-
lution with LoGs of various widths. The scale of the image at that point corresponds to
the width at which the response is a maximum. Once the scale is determined, the Harris
detector (which provides the corner measure) is applied to the image, with the value of

3
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σ specified by the image scale at each point. From the scale independent detector, affine
invariance was produced by estimating the affine transformation which maximises the lo-
cal isotropy (given by the ratio of smallest to largest eigenvalues for the Karhunen Loeve
transform of neighbouring pixels). Although this appears to give more consistent matches,
the points detected appear more like blobs than corners, and so might be of less utility
for 3D reconstruction than points from the original Harris detector.

2.1.1 The GA trained Harris detector

The performance of the Harris detector is dependent on α, and on the shape of the dis-
tribution with which the images are convolved. The choice of a Gaussian seems somewhat
arbitrary, so it was attempted to find an alternative which would be optimal with respect
to the performance on a simulated training set. Since this performance will be subject to
statistical fluctuation, many standard optimisation techniques could not be used. Instead,
a genetic algorithm (GA), as described in the Appendix, was constructed and applied to

Output of GA corner detector
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2 4 6 8

2

4

6

8

Output of standard Harris detector

200 400 600

100

200

300

400

Figure 1: Output from the Harris detector, with and without the modified convolution
function
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Figure 2: Output from two different runs of the GA

find both of these parameters. The convolution function G, was defined over an 11 × 11
grid, and forced to be invariant to flipping the coordinate axes so that the resulting de-
tector would be as well. This made a total of 15 unknown function parameters, and the
value of α to be optimised with respect to the reward function.

Initially, the reward function for the GA was based on a data set consisting of corners
(of various angles) and non-corners (mostly edges). The data sets were corrupted by
additive white noise (with size chosen to be one fifth of the edge strength), and the
detector performance was measured by the Fisher separation between the closest corner
and non-corner classes. Figure 1 shows an image taken from the Parafield fly-over, the
output from the original Harris detector, and the modification of the Harris to maximise
the Fisher separation.

The output template from the genetic algorithm was reasonably consistent between
runs, as can be seen from the two example genotypes in Figure 2. These two examples
show the mean and the standard deviation in the population after the GA no longer seems
to be improving performance. While a few of the variables showed noticeable differences
between runs, the general shape of the function appears consistent. Performance-wise, the
results were almost identical, and for each of the 10 times that the GA was reinitialised
and run, the Fisher separation between the corner and the edge classes increased from
about 0.7 for the original Harris detector to about 1.6.

To give a more useful measure of performance of the new detector, a larger data set
consisting of 10, 000 instances of each of the corner and edge types from the left of Figure
3 were computed. The original and GA versions of the corner detector were then applied
to each of the sets, and ROC curves were computed, as shown in the right of Figure 3.
The area under the curve was 0.995 for the GA Harris, but only 0.911 for the original.
Also, for a 90 percent corner detection rate, the GA modification reduced the percentage
of false alarms by a factor of 50. It should be mentioned however that there may have been
some over-training specifically for the corner types in the data set (as evidenced by the
strong diagonal values of the template shown in Figure 1. The performance gain may not
be as great when a more continuous range of corner angles are used in training. Secondly,
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Figure 3: Performance of the original and the GA Harris detectors on a simulated data
set

optical imagery has perhaps less problem with additive white noise than with blurring and
diffraction effects. Therefore, although the new detector exhibits insensitivity to speckle,
it may not prove a better detector in real images. Thirdly, as can be seen by the output of
Figure 1, the peaks in the detection map of the image are broad, so the localisation error
will be significantly increased.

The area under the ROC curve on a synthetic data set is not the only measure of
success that can be used to train the genetic algorithm. Some other reward measures have
also been tested, and these are summarised in Section 2.7.

2.2 The Shi-Tomasi and related detectors

The Harris detector is only one of an entire class of detectors which approximate the
image by a continuous function, and uses estimates of the derivatives to detect corners.
The most commonly used of these is the Shi-Tomasi detector [25], which is the basis of
the commonly used KLT (Kanade-Lucas-Tomasi) tracker, as described in Section 3.2. The
KLT tracker requires the solution to the matrix equation

(
∫

∇I(x)∇T I(x)w(x)dx

)

d = e

where I(x) is the image, ∇ is the gradient operator, defined as a column vector, w(x)
is some local weighting function (frequently a constant over some rectangular window),
d is the displacement between the images, and e is a measure of the dissimilarity of the
images. The image displacement can be found most accurately when the matrix on the
left has large eigenvalues, which do not differ in scale too much. As a result, if λ1 and λ2

are the two eigenvalues, the best corners for tracking have been chosen to satisfy

min(λ1, λ2) > t

6
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for some threshold t. Therefore, the term on the left hand side can be taken as a local
measure of cornerness. As with the Harris detector, peaks will occur where there is a large
intensity variation in perpendicular directions.

The detector proposed by Harris and Stephens was as given in equation (1). A paper
by Noble [19] however cites another earlier paper by Harris in which he incorrectly claims
that the corner detector was formulated as

gxgy − g2
xy

gx + gy
(2)

When the threshold of the Harris corner measure is zero, this will be equivalent to
thresholding (2) at the value α, but thresholds at other levels are not equivalent. It is not
known whether this reformulation was instigated by Noble for the purpose of removing
the empirically chosen constant α (as is sometimes claimed). In any case, Noble analysed
the detector, and showed that it was related to the curvature of the manifold defined by
(x, y, I(x, y)) in the plane perpendicular to the gradient. For this reason, it will be referred
to here as the Noble detector. The following modification of the Noble detector

gxgy − g2
xy

(gx + gy + σ2)2
(3)

can be made to this detector to make it largely invariant to the intensity scale of the
image. The parameter σ2 is related to the level of noise in the imagery, so that statistical
fluctuations in pixel intensities will rarely produce a strong corner response. This formula
will be referred to as the intensity invariant Noble detector.

Another detector which has seen frequent use (owing mostly to being one of the earliest
corner detectors) is the Kitchen and Rosenfeld detector [11]. It basically models the
intensity as a continuous function, and estimates the product of curvature of the intensity
contour line at that point in the image, and the edge strength. This gives the rotation
invariant measure of cornerness,

IxxI2
y + IyyI

2
x − 2IxyIxIy

I2
x + I2

y

, (4)

where Ix and Ixx are the first and second derivatives of the image with respect to the x
variable. If there is noise in the imagery, the estimates for the second derivatives can be
quite poor which may lead to spurious corner detection.

Tissainayagam and Suter [28] assessed the performance of four types of corner detectors
(Noble 1, Kitchen-Rosenfeld, SUSAN, and the KLT (Kanade-Lucas-Tomasi) method) for
feature tracking applications. Here, the tracking capability of the detector is measured by

1This is referred to by the paper as the Harris detector, but specified that the corner measure is of the
form of equation (2) rather than equation (1)
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considering video sequences of a static scene. An original set of detections are produced
for the first frame, and these are tracked throughout the entire image sequence. The
performance of the detector is measured by the percentage of points that can be tracked
throughout the sequence, and by the mean distance of the tracked point from the original
detection. By these measures, it was found that the Noble detector and the KLT method
were significantly better than the other three detectors in all four of the test sequences.
The Noble detector proved better than the KLT method in half of the sequences. It is not
really useful to compare these two methods however, since they both use not only different
corner detectors, but different methods of tracking, and it cannot be certain whether that
it is the detector or the tracker which is producing the difference in performance.

2.3 The SUSAN detector

The SUSAN detector, invented by Brady and Smith [27], is one of the most frequently
cited corner detectors in more recent literature. It stands for Smallest Univalue Segment
Assimilating Nucleus, and is based on extracting a segment of a small circular image
mask which has roughly the same intensity as the central pixel (or nucleus). This segment
(called the USAN) will have an area which is smallest at a corner of two regions of unequal
intensity (about one quarter of the total area for a perpendicular corner), increase to one
half for an edge, and become the entire area in the centre of a region with uniform intensity.
The inverse of this area at each point can therefore be used as a measure of cornerness.

Due to image noise and intensity variations, there is no obviously correct method for
determining whether two pixel’s intensities are equivalent. Brady and Smith’s approach
is to require a user defined threshold t and defines a fuzzy measure of compatibility given
by

c(x, y) = exp

[

−
(

I(x) − I(y)

t

)J
]

for some even integer J , and threshold t. When J = 2 this is a Gaussian, and as J → ∞
the fuzzy measure becomes a hard 0 − 1 decision. Each pixel in the image mask then
contributes some amount to the area of the USAN. For a given value of t, the performance
of SUSAN for edges was then measured by looking at the response due to two classes of
image (an edge of strength dt and a uniform patch) with the addition of white noise of
standard deviation σt. If the responses for the classes have means µe, µp and variances
σ2

e , σ
2
p, then the degree of overlap of the two classes, given by

F (J, d, σ) =
σe + σp

µe − µp
,

should be minimised to give a better performance. Instead of choosing the maximum for
particular values of d and σ, a uniformly weighted average performance over a range of
likely values was calculated to give

f(J) =

∫ 10

d=1

∫ 1/
√

2

σ=0
F (J, d, σ)dσdd.

8
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This performance measure was then calculated over a range of J , and it was found that a
value of J = 6 gave the least amount of overlap (with a value for F of 0.850 compared to
about 0.87 as J → ∞, which is not a huge improvement).

Once a value of cornerness has been calculated for each point in the image, some post-
processing is applied to remove false alarms. For each detected corner (i.e. one for which
the area of the USAN is less than one half), it is checked whether there exists a radial
line from the nucleus for which every point belongs to the USAN. This type of processing
effectively removes small blobs from being detected as corners.

In the Parafield fly-over imagery, there are many cases where connected facets have a
visible edge, but there is not a large intensity difference between them. SUSAN has not
been designed to work in these cases, and so misses many of these corners. SUSAN also
seems to work poorly in other situations too. For instance, in Suter and Tissainayagam’s
paper [28], SUSAN was used to track the hundred strongest detected points throughout a
video of some static scenes. The number of corners that were successfully tracked were then
plotted as a function of the number of frames. It was found that of the corner detectors
tested, SUSAN consistently produced the lowest number of stable corners, and also gave
the worst localisation of those corners which were successfully tracked. SUSAN however
is quite different from the other detectors tested in that there is not really any idea of a
dominant corner. In any given frame, any corner could produce a stronger response than
any other corner, even though the corners might produce consistently stronger responses
than non-corners. In that scenario, if the actual number of corners was greater than 100,
any given corner might not be consistently tracked by SUSAN despite effectively removing
any non-corners.

Another paper by Martinez-Fonte et al. [15] produces empirical performance measures
of corner detection performance on IKONOS satellite imagery of buildings from the city
of Ghent. This was done by manually selecting corner points from an image, and running
the corner detector over the same image. For each threshold on the corner detector, a
probability of detection and a false alarm rate are obtained, and a ROC curve can be
plotted. In this paper, the Noble and the SUSAN detector were compared. It was found
that, for lower detection probabilities, both detectors produced similar numbers of false
alarms. For higher detection probabilities however, the Noble detector had a significantly
lower false alarm rate.

2.4 The SIFT detector

SIFT stands for Scale Invariant Feature Transform, and was designed by Lowe [13] to
address the need for detecting features which are partially invariant to affine and projective
transformations.

The first step in the SIFT algorithm is to construct an image pyramid by successively
convolving the image with Gaussians having a width of

√
2 pixels, followed by subsam-

pling. The output of the pyramid is an array Bk which contains the smoothed images,
and Ak which contains the difference between images smoothed at successive scales, and
emphasises edge and corner features.

Once the image pyramids have been formed, the second SIFT step is detection, which
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basically looks for local maxima (or minima) in the pyramid Bk. This step effectively
detects blobs which are of higher or lower intensity than its immediate background, and
also the approximate size of the blob (corresponding to the height of the maxima/minima
in the image pyramid). Each of these detections is referred to by Lowe as a “feature key”.

After detection, the orientation of each feature key is estimated. The orientation
estimate uses the edge pyramid Ak, to construct gradient magnitudes M and gradient
orientations R at each level of the pyramid, as defined by

Mk =

√

(

∂

∂x
Ak

)2

+

(

∂

∂y
Ak

)2

Rk = arctan

(

∂

∂y
Ak/

∂

∂x
Ak

)

For each feature key, and at each level, an Gaussian weighted ring of pixels about the
central pixel (with a width three times the scale of the detection) is extracted. A histogram
of the edge intensity of the pixels above one tenth of the maximum edge intensity is then
constructed. The histogram has 36 bins covering the 360 degree range of rotations, and
the maximum position is then defined as the orientation.

In order to facilitate matching between sets of SIFT detections from separate images,
the local shape information from each feature key is stored. This is achieved using the
previously computed Mk and Rk at the scale level of the detection to produce a set

SIFT detections in an image of Parafield control tower
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Figure 4: SIFT detections in an example image
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of oriented edge images. Lowe splits the edge orientations into 8 evenly spaced bins,
centered on the detection orientation, stores the gradient magnitude in each direction,
then subsamples the resulting image to 20 points, which gives a total of 160 edge image
points describing the shape information. By a direct comparison of these features between
images, correspondences between SIFT detections may be made automatically.

Figure 4 shows the features detected using SIFT (as implemented by Scott Ettinger in
MATLAB) in an image from the Parafield fly-over. As can be seen, few of the detections
correspond to true corners, or in fact any part of the scene which would prove especially
useful in reconstructing meaningful 3D models of the building. Also, there is no threshold
to be set as all local maxima in the image pyramid space are classed as detections. This
means that it is not possible to increase the density of points to be tracked, so that large
areas of the building will not be accurately reproduced by any algorithm relying on these
detections. There has been greater success however with using SIFT for structure from
motion in office environments, where the sizes of the detected blobs are generally quite
small compared with the size of the object to be modelled.

2.5 Local energy detector

The local energy method was based on a simulation of neural processing in a biological
visual system by Heitger [7], which was then modified by Robbins and Owens [21]. Like
the Shi-Tomasi detector, it searches for points at which the local intensity varies in per-
pendicular directions. The local energy implementation first applies an edge filter, which
should detect linear features corresponding to step edges and narrow lines. A similar fil-
ter is then applied to find variations in the edge strength along the length of the edge.
Detections are made separately over a set of edge orientations, and then combined.

Rather than use standard edge detectors, Heitger used a formulation based on the
Gabor filter. Standard Gabor filters in one dimension take the form,

Geven(x) = exp

(

− x2

2σ2

)

cos(2πν0x), Godd(x) = exp

(

− x2

2σ2

)

sin(2πν0x),

where ν0 is the spatial frequency and σ is the overall scale. The two orthogonal functions
are tuned for the detection of different characteristics. While the even function detects
bright or dark pixels, the odd function detects step changes in intensity. As a result, any
discontinuities in a signal f(x), can be detected by locating peaks in (Geven ∗ f)2(x) +
(Godd ∗ f)2(x), which is described as “local energy”.

The non-zero response of Geven to a constant input is undesirable for discontinuity
detection, so the filters were modified to give the S-Gabor functions

Geven(x) = exp

(

− x2

2σ2

)

cos

{

2πν0x

[

k exp

(

−λx2

σ2

)

+ 1 − k

]}

Godd(x) = exp

(

− x2

2σ2

)

sin

{

2πν0x

[

k exp

(

−λx2

σ2

)

+ 1 − k

]}

,
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with k = 1/2 and λ the smallest root of
∫ ∞
−∞ Geven(x)dx = 0. This modification reduces

the frequency away from the origin. It is readily confirmed that roots depend only on ν0σ,
and exist if that product exceeds approximately 0.38.

For a discrete signal, the filters can be constructed using the same formulas, and
manipulated using the discrete Fourier transform (DFT) for a filter length equal to the
signal length. The minimum value of ν0σ and the value of λ for fixed ν0σ are almost
independent of σ for σ ≥ 2 and long signals. The plots in both local energy papers [7, 21]
resemble those for ν0σ = 0.4, so a value for σ determines values for ν0 and λ.

Two-dimensional filters can be constructed using the McClellan transformation [16].
For an m × n image, the (i, j) element of the DFT (modulo (m, n) ) refers to frequencies
of i/m and j/n cycles per pixel (cpp). The combination is related to a radial frequency
r/N cpp, where N is a suitable one-dimensional filter size such as max(m, n), through

cos(πr/N) = cos(πi/m) cos(πj/n).

The design properties of a symmetric one-dimensional filter are then transferred to
two dimensions by setting the two-dimensional DFT at (i, j) equal to the one-dimensional
DFT at r, found by interpolation if necessary.

The symmetric two-dimensional filter can be made directional by multiplying the DFT
by an angular term cos2k(ϕ−ϕ0) where tan ϕ = (j/n)/(i/m), ϕ0 is the angle of orientation,
and k = 3 is recommended [21]. The result is the DFT of the desired filter, to which the
inverse DFT must be applied. Then a directional, two-dimensional version of Geven can
be produced for any desired ϕ0.

Both local energy papers [7, 21] claim to use the same method to produce a two-
dimensional version of Godd. The one-dimensional filter is odd and has an odd (and pure
imaginary) DFT. The McClellan transform uses only the positive half of this DFT to
construct a two-dimensional DFT, but the DFT should be pure imaginary and negated by
a 180o rotation if it is to produce an odd real directional filter. It is assumed here that the
angular term for the odd directional filter is cos2k(ϕ − ϕ0) sgn(cos(ϕ − ϕ0)), so that the
DFT is odd and resembles the DFT of Godd along any line through the DC point. Then
the two-dimensional versions of Geven and Godd agree qualitatively with the spatial and
Fourier domain figures in both papers.

For a two-dimensional signal f(x, y), the function defined by

F (x, y, ϕ0, σ) =
√

(Geven(ϕ0, σ) ∗ f)2(x, y) + (Godd(ϕ0, σ) ∗ f)2(x, y)

detects linear features at orientations near ϕ0 (zero for lines in the ±y direction) at scale
σ. If the operation is applied a second time with an orthogonal orientation, the ”oriented
two-dimensional local energy”

E(x, y, ϕ0, σ) =

√

(Geven(ϕ0 +
π

2
, σ) ∗ F )2(x, y) + (Godd(ϕ0 +

π

2
, σ) ∗ F )2(x, y)
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Figure 5: Comparison of local energy maps using different edge filter templates

detects lengthwise discontinuities in these features, and these are often places where lin-
ear features at orientations near ϕ0 terminate or reach corners or junctions. The “two-
dimensional local energy” is obtained by evaluating E for a range of orientations (Robbins
& Owens [21] recommend ten equally spaced values of ϕ0 over a 180o range) and summing
the results. Maxima in this local energy will correspond to corners, junctions and endings
of linear features at any orientation, as well as strong point features or “blobs”.

The S-Gabor filter template used for the edge detection was inspired by similarly
shaped biological filters found in the vision system of a cat. No theoretical justification has
been provided for using this particular filter, so alternative edge detectors might provide
superior corner detection. Figure 5 shows a comparison of the local energy using the S-
Gabor filter, and using a sharper linear filter. This linear filter was similarly designed to
be a combination of orthogonal odd and even filters, each of which had zero mean. The
relative intensity scaling of the filters was also chosen so that the sum of the squares of
the even and odd components were both equal, which is a characteristic that the S-Gabor
filter pairs also seem to have. This means that the filter should not show a preference
for detecting step edges compared with lines. The two images in Figure 5 appear to have
consistent local maxima, but the Gabor filter based image has much broader maxima,
and seems to have more noise. The linear filter based method however shows a greater
response to edges.

2.5.1 Modifications to the local energy

If true corners are to be located, the local energy method needs to be modified to
suppress its responses to line endings and point features. A simple way to achieve this
uses the fact that the oriented two-dimensional local energy E(x, y, ϕ0, σ) may be treated
as a function of ϕ0 with period π. A point feature will contribute to the energy for all
orientations, and so to the DC term in the Fourier series for the energy. A line ending will
contribute mainly to a single orientation and so mainly to the fundamental frequency. Two
perpendicular line endings, corresponding to an ideal 90o corner, will contribute mainly to
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the second harmonic. Therefore, to emphasise corners, the sum of the oriented energies is
then replaced by the second harmonic amplitude

√

√

√

√

[

n−1
∑

i=0

cos

(

4πi

n

)

E

(

x, y,
πi

n
, σ

)

]2

+

[

n−1
∑

i=0

sin

(

4πi

n

)

E

(

x, y,
πi

n
, σ

)

]2

, (5)

where n = 10 is the setting already recommended above.

The autocovariance matrix used to define the Shi-Tomasi, Harris and Noble corner
detectors, where the three unique matrix elements gx, gy and gxy measure the edge strength
in the x, y and ±45o directions. This means that the corner energy terms will be gxgy

and g2
xy. Since the gradients are periodic over 2π rather than π, the second harmonic

amplitude defined in equation (5) will be equivalent to gxgy − g2
xy = detA, where A is the

autocovariance matrix defined by

A =

[

gx gxy

gxy gy

]

.

This is the main term in the Harris detector (which is detA − λ trA), although an extra
term was required to further suppress edges.

The similarity between the local energy and the autocovariance methods also suggest
that the Harris, Noble and Shi-Tomasi detectors can be reformulated in the local energy
context. There are several ways in which this could be done, but the most obvious is
to equate the eigenvalues of the autocovariance matrix with the maximum and minimum
oriented local energies, so

λ1,2(x, y) ≡
{

max
ϕ0 F (x, y, ϕ0, σ) ,

min
ϕ0 F (x, y, ϕ0, σ)

}

.

Each of the autocovariance based detectors then becomes

Shi-Tomasi: λ2

Noble:
λ1λ2

λ1 + λ2

Harris: λ1λ2 − k(λ1 + λ2)
2

Intensity invariant Noble:
λ1λ2

(λ1 + λ2 + σ2)2
.

A comparison of the performance of these local energy based measures is provided in
Subsection 2.7.
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2.6 Hough transform methods

Hough transform methods relate detected features to parametric descriptions of objects
to which those features belong. For example, an edge detection is related to the parameters
(slope and intercept, say) of any straight line that passes through the point of detection.
The detection “votes for” every compatible object, and a table of votes for all objects (the
“Generalised Hough Transform” of the input image) is maintained as the detections are
considered. Finally, objects with the most votes are considered to be detected. In the case
of lines, this approach allows broken or partially obscured lines to be detected so long as
the visible pieces are collinear.

This method can be applied to complex objects with many parameters to specify,
but it then has the difficulty that a larger table of “votes” must be kept. At best, only
a discrete set of values can be considered for each parameter, so a detected object is
not identified exactly. Supplementary measurements on detected features can reduce the
storage and computing requirements. Thus, if the orientation of an edge is estimated (even
approximately), the set of relevant straight lines can be reduced.

Specialised HT methods for polygons of various degrees of symmetry, and corners,
are discussed in Davies [3]. These are versatile enough to allow for rounding of corners
by manufacturing imperfections, but impose restrictions like the size of angles in objects.
They do, however, suggest a simple and novel approach for corners with general angles
and for junctions of two or more lines.

The possibility of a straight line edge passing through ‘A’ needs supporting evidence
from nearby edge pixels, which should have an orientation compatible with the edge passing
through ‘A’. For a corner to exist at ‘A’, there should be evidence of two or more edge
segments intersecting at ‘A’, with an angle between two of them significantly different
from 180o. Only information a small distance from ‘A’ (say less than five times the pixel
size) need to be considered when determining how likely the pixel represents a corner.
One possible implementation of a Hough transform based corner detector based on this
observation is as follows:

• Edge detection: Use a standard edge detector on the image, and threshold to give
a set of edge pixels with their orientations.

• Corner voting: Each edge pixel ‘B’ provides a vote to neighbouring pixels ‘A’ which
are within a certain distance of ‘B’, and are within some specified angle from the ori-
entation of the edge through ‘B’. Each vote is a vector of the form k(1, cos 2θ, sin 2θ),
where θ is the direction of ‘B’ from ‘A’, and k could either be constant, or propor-
tional to the edge strength at ‘B’.

• Corner detection: A corner is detected if the first component of the accumulated
vote is above some user defined threshold. The corner strength is given by

D = 1 −
∑

i Pi

N

2

where (N, P1, P2) is the accumulated vector for that pixel.
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The first edge detection step is not necessary for the case when the size of the vote is
proportional to the edge strength, because non-edges would have a relatively small contri-
bution. It does however reduce the total amount of computation required for generating
the Hough transform.

The second step accumulates the vector (1, cos 2θ, sin 2θ) at each pixel ‘A’ in the image.
The first variable indicates the total number of local edge points passing through ‘A’,
but this will be large, not just at corners, but also at edges. The last two variables
reduce the weighting on the edges. Consider the particular example of a straight edge
with orientation θ0 passing through ‘A’. Then if ‘B’ is a pixel on this edge, it would
contribute (cos 2θ0, sin 2θ0). This contribution will be unchanged when ‘B’ is moved to the
opposite side of ‘A’. This means that if ‘A’ lies on an edge instead of a corner, the average
accumulation < cos 2θ0, sin 2θ0 > should lie on the unit circle, and so the corner strength
D = 0. If, at the other extreme, the point ‘A’ is at the intersection of two perpendicular
edges of equal strength, the mean of P will vanish and D achieves its maximum value of
1.

2.7 Evaluation of corner detectors

There have been a number of different methods for assessing the detection of corners.
The measures suggested by Schmid et al. [24] and Tissainayagam and Suter [28] are based
on the idea of repeatability of corner measurements. In the case of Schmid et al., the
performance measure was the percentage of points consistently detected in two images
differing by an affine transformation. Tissainayagam and Suter however measure the
consistency of detections in a static sequence. The two papers do not consider any corner
detectors in common. In the first paper, the Harris detector gave higher repeatability under
affine transformations than detectors by Heitger, Cottier, Horaud, Heitger and Förstner.
In the second paper, the Noble and Shi-Tomasi detectors gave the most consistent results
in static videos, compared with SUSAN and the Kitchen-Rosenfeld detectors.

There are a number of problems with solely using repeatability measures as a measure
of performance in the the current structure from motion work. Firstly, there is no test
whatsoever that the detected points correspond to corners. All that can be said is that
the points (which might be the centres of blobs, as in SIFT, or local intensity maxima) are
detected consistently. For buildings, real corner points are more likely to correspond to
points that are useful in creating a wire-frame model (i.e. the junctions of three surfaces),
and other points of interest are of less use, regardless of how consistently they are tracked.
Secondly, the performance measure also implicitly assumes that features will be tracked
between frames by detecting a fixed number of corners in each frame, and then associating
the detections. This may not be the ideal tracking method. For instance, suppose an
almost perfect corner detector existed which consistently produced a value close to 1 at
corners, with 0 elsewhere. If N corners are detected in each frame, and the actual number
of corners is Nc > N , then because there is no dominant corner, in each frame there will be
a probability of N/Nc of losing track of a point. This means that the ideal corner detector
could appear to perform very poorly based on this measure of repeatability. Some better
methods for tracking are described in Section 3.

Rockett [22] and Martinez-Fonte et al. [15] have used a more empirical method for
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assessing corner detectors. In these papers, examples of true corners and non-corners
are provided to each of the detectors. For each threshold level of the detector, the corner
detection probability and the false alarm rate are measured, and plotted as an ROC curve.
The area under the ROC curve may then be used as a measure of performance of the corner
detector. Rockett used simulated corners in his experiments, which allowed him to obtain
accurate results using large data sets. Martinez-Fonte et al. used manually selected points
from real images of buildings. Again, there were no corner detectors in common between
the studies. Rockett found that the Harris detector gave the best detection rate (although
it did not localise well) when compared to the Paler and Kitchen-Rosenfeld detectors.
Martinez-Fonte et al. found that the Noble detector gave marginally better results than
SUSAN.

For this report, the performances of a wide variety of corner detectors have been
compared, following the work of Martinez-Fonte et al. [15]. Here, a set of 92 structurally
important corner points were manually selected in the first frame of the Parafield fly-
over sequence, as shown in Figure 6. These were then automatically tracked, using local
correlation matching (see Section 3.2), throughout the sequence of 51 images, each of
704 × 480 pixels. The corner detectors were then applied to each image, the detected
points close to stronger detections were suppressed, and then the remaining detections
were compared with the ground-truth points to generate ROC curves.

Figure 7 shows ROC curves for seven commonly used corner detectors. It should be
noted that the SUSAN detector uses only the initial measure of cornerness, and does not

Manually selected corners from the Parafield fly−over
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Figure 6: Manually selected corner points from the first image frame
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Figure 7: Comparison of performances of seven types of corner detector

include any of the post-processing operations for reducing the number of false alarms.
The effect of this processing will be considered later. The Paler detector [20] is based
on the observation that a median filter tends to keep edges intact, but blur the corners.
The measure of cornerness is then just a difference between the pixel intensity and the
intensity of the median of the local neighbourhood of pixels. The local energy detector is
the standard implementation of Robbins and Owens [21], which uses sequential S-Gabor
based edge detection (see Section 2.5). The remaining detectors as as described in the
previous subsections.

From the ROC curves, the Harris detector appears to be the best performing, con-
sistently giving either fewer or equal numbers of false alarms for a specified detection
probability. This result further supports the evaluations of previous studies (Schmid et al.
[24] and Rockett [22]) which concluded that the Harris detector performed better (if we
ignore corner localisation) than competing detectors. In Subsection 2.1, it was proposed
that the Harris corner detector could be improved by using a weighting function different
from a Gaussian in implementing the detector. This function could be determined using
a genetic algorithm with some reward function based on a corner training set. Figure 8
shows some ROC curves obtained using this method to maximise a number of different
performance metrics.

The first set of ROC curves from Figure 8 show implementations of the Harris detector
using weighting functions optimised separately for three different performance metrics.
The first metric is the repeatability metric used by Tissainayagam and Suter. Here, the
corner detector is first applied to a frame of the sequence to give 100 detections. Then,
white noise is added to the image, and the process repeated. The average number of
detections repeated is then used as a measure of the performance of the detector. This
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training method has been termed unsupervised, since no information about the real corners
is available during training. It can be seen that the ROC curves for the unsupervised case
are much worse than if the default Gaussian weighting had been used. This is because the
detector is becoming better trained to detect regions of high intensity and small blobs,
which can be consistently detected, but are not the corner points which are of most interest
to detect.

The second metric used for training the Harris detector, the performance of which is
shown in Figure 8 (labelled as Supervised, with simulated data) is that of Rockett [22].
This metric is based on an artificial but realistic looking training set containing corners
and non-corners. The set of corners was simulated with uniformly distributed corner angle
and orientation (with the minimum angle required for a corner set to be 10o). The set of
non-corners consisted only of straight lines and edges of arbitrary orientation. Both types
of images had additive white noise applied. The area under the ROC curve for the resulting
simulated data was then used to train the genetic algorithm for the weighting function.
Figure 8 shows a noticeable improvement in performance for the first 80 percent of targets,
however it is much worse above this. From this, it seems likely that the simulated model
used for the corners differs from the actual corners to be detected in about 20% of cases.

The final metric used in training the Harris detector with modified weighting function
is based on the empirical area under the ROC curve, and is referred to in Figure 8 as
supervised with real data. To avoid potential problems with overfitting, only the ground-
truth and false alarms from the first image frame were used for constructing the ROC
curves used for training the GA. As shown in Figure 8, using the area under that ROC curve
as the reward criterion resulted in an overall improvement in the detection performance.

The second diagram of Figure 8 repeats some of the experiments from the previous
diagram for the intensity invariant Noble detector, which also uses a Gaussian weighting
distribution by default. As for the Harris detector, using Tissainayagam and Suter’s
repeatability for training reduced the overall ability to detect corners. The reduction was
not quite as marked as for the Harris detector because of the impossibility of training
the intensity invariant detector to detect bright patches at the expense of corners. Again,
training on the area under the ROC improved the detection performance, although this
was much more significant for an 11× 11 window size than for a 9× 9 window. Increasing
the size further to 13 × 13 however appeared to make little difference, and is not shown
here.

In Figure 7, the local energy detector appeared to perform very poorly. This, at
least partially, will be due to the extremely broad maxima in the local energy around
each detection, which results in multiple detections for a given peak. Non-maximum
suppression may significantly improve this performance, although Rockett [22] found that
this actually harmed performance when applied to the Kitchen-Rosenfeld detector. There
are, however, a number of other methods for improving the local energy detector which
have not yet been tested.

Subsection 2.5 described in detail the operation of the local energy detector. Some of
the different possible implementations of the detector included changing the type of edge
filter to a pair of orthogonal linear edge filters (see Figure 5 in Subsection 2.5), and using
the second harmonic of the 2D local energies as defined by equation (5). There are also
different ways to apply the perpendicular local energy filters: sequentially, or separately
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Figure 9: Comparison local energy detector performances
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with the results combined later. Numerous methods also exist for combining the edge
energies, which do not merge perpendicular edge orientations. Some of these methods are
inspired by the autocovariance matrix based detectors (the Harris, Noble and Shi-Tomasi
detectors). Figure 9 gives a comparison of a number of corner detection results for local
energy implementations.

The first set of ROC curves clearly shows the effect of the template type. The two
curves obtained using the S-Gabor edge filter are much worse than the equivalent curves
obtained using the orthogonal linear filters. In Heitger’s paper [7], it was implicitly as-
sumed that the S-Gabor was best, because it appeared in a biological system which had
evolved for the task. However, biological systems have great difficulty approximating step
edges, and it may be that in the final design that there was a trade-off between the edge
filter shape and the sensor packing density. In this application, no such trade-off is nec-
essary, and it appears that the edge filter shape could easily be improved. Similarly, the
two curves which use the second harmonic component of the local energy, as defined by
equation (5) give better results than for the raw local energy. For the S-Gabor filter case,
the improvement is significant, but is only marginal for the linear filter case.

The second set of ROC curves all use the linear filter. The original formulation of the
2D local energy for a given orientation ϕ applied the edge filter G(ϕ0, σ) to the image,
and then followed up with the application of the perpendicular filter G(ϕ0 + π/2, σ). One
can obtain a similarly behaving detector by defining

Ẽ(x, y, ϕ0, σ) =
√

F (x, y, ϕ0, σ)F (x, y, ϕ0 + π/2, σ).

This product detector (as distinct from the original sequential detector) should suffer
from less blurring. As can be seen from the ROC curve, it also substantially improves
the detection performance on real corners. The next few curves were obtained by taking
λ1 and λ2 as the maximum and minimum edge energies for each point in the image over
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the various orientations. As defined at the end of Section 2.5, these are then combined in
various ways to give different detectors. For the Harris based detector and the intensity
invariant Noble detector, the unknown parameters were chosen to be k = 0.085 and
σ = 1000. These values were chosen by optimising the performance on the first image in
the sequence, which was effectively used as training data. Figure 10 shows a plot of the
normalised area under the ROC curve as a function of the parameter k. All of the different
combinations proved more effective than just using products of perpendicular edge filter
responses, but there was not a lot of difference between the various combinations.

The generalised Hough transform was described in Subsection 2.6. It is based on
accumulating evidence of corners at each point based on edge information from nearby
points. Only edges with directions within some user defined angle θerr of passing through
a pixel contributes to the evidence at that pixel. There are two related corner measures
which are produced by the method. The first is the combined edge strength K of all of
the neighbouring pixels contributing to a corner. This measure will be large for edges as
well as corners. The second measure D is a quantity between 0 and 1, which relates to
the angle subtended by the corner. This effectively eliminates the response due to edges,
but may still be large in cases where there is not enough evidence.

Figure 11 shows the performance of a number of implementations of the generalised
Hough transform detector. The first two curves combines the edge strength K and cor-
nerness measure D into a single measure by multiplying the two. The performance of
this product, for the Parafield data, was compared for two different values of θerr. It was
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found that θerr = 15o gave a noticeable improvement over θerr = 30o. Further simulations
(not displayed here) found that decreasing θerr still further did not result in any more
improvement.

The next two curves of Figure 11 examine the effect of using the edge strength K
by itself. The second of these curves used an alternative method for determining which
pixels contributed to the edge strength. Here, the edge direction of the candidate corner
pixel was determined, and any local pixels within 3 pixels of this estimated edge were
automatically ignored. The remaining pixels could contribute to the edge strength as
discussed previously. The aim of this modification was to try to remove the contribution
of edges in a different way from the one chosen in computing the value of D. As can be
seen from the ROC curve however, this alternative method shows no obvious advantage
over the nominal method for calculating K. The final ROC curve of the figure combines
K and D by thresholding based on K (where the threshold was chosen to give a PD of
96%) and then sorting the corners based solely on the corner measure D. This method
gave the best result of all of the GHT based detectors.

3 Point trackers and related detectors

In order to use most of the standard shape from motion algorithms, the position
of features needs to be known throughout a number of frames, and so requires some
sort of tracking. This section describes a number of simple and commonly used tracking
algorithms for point features. Each point tracking method can also be associated with
a point detection algorithm using the principle expounded by Shi and Tomasi [25], that
the best features to track are generally the ones that are easiest to track. This section
therefore also analyses a number of new corner measures relating to the ease with which
a point can be tracked to the next frame for any given tracking method.

Several types of tracking methods have been considered. In the first type, sets of fea-
tures are detected in each frame, and the tracking algorithm consists of finding associations
between the detected points. A brief description of some of this nearest neighbour data
association is provided in Subsection 3.1. The second type of tracking detects features in
the first frame only, and then determines their motion between frames. The KLT tracker,
perhaps the most commonly used feature tracker, is of this second type, and is discussed
in Subsection 3.2. Correlation matching, described in Subsection 3.3 is also of this type.

Every tracking algorithm has an implicit model describing how the features move.
Many of them use the fact that in a video sequence, consecutive frames are temporally
close together, so the feature is unlikely to have moved far. In this case, the predicted
position in the next frame is just the position in the current frame. This prediction
can be improved upon by estimating velocities and accelerations for each point, or by
using correlation properties between the motions of features in the same sets of frames.
Subsection 3.4 describes a number of methods for improving the predicted positions of
tracked features. The final subsection describes ways for determining whether a tracking
method has jumped to the wrong feature, so that the track may be terminated.
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3.1 Nearest neighbour data association

Unlike some of the tracking algorithms discussed later (such as the KLT tracker and
correlation matching algorithm), Nearest Neighbour Data Association does not directly
deal with the image. Instead, it is assumed that some interest point detector has been
applied to each of the images to give a set of detections for each frame. NNDA then
associates the detections in the new frame to those in previous frames, using the following
simple algorithm:

• Predict corner positions: Using the positions of the detections in previous frames,
predict where they are likely to appear in the current frame. A number of ways to
do this are discussed in Subsection 3.4.

• Data association: Find the spatially closest detection in the current frame to each
predicted position, and associate the two.

The performance of this algorithm will depend strongly on the reliability of the particular
corner detector used to generate feature detections.

3.1.1 Nearest neighbour corner detection

In this subsection, a corner detector is described which measures the ease of tracking
a feature using the NNDA tracking method. The specific metric used to describe this is
the amount of image noise required to produce a certain likelihood of a mismatch in the
tracker. The operation of the NNDA tracker is strongly dependent on the particular corner
detector being used to find features within each frame prior to association. This means
a different measure will be obtained when a different corner detector is used. In fact,
an NNDA tracking performance measure could be computed based on a corner detector
which was another NNDA tracking performance measure. At this stage, it is not certain
what the effect of this recursion of the method might have. Since non-zero values will
only occur at local maxima in the original corner map, further iteration may not add any
performance to the resulting detector. This has not been simulated, however, due to the
extreme computational requirements of such a task. In fact, even the first application of
the method is fairly difficult, due to the analytic intractability of most of the common
corner detectors.

Figure 12 shows a ROC curve based on the NNDA performance measure for the Shi-
Tomasi detector. Due to the complexity of the detector, an analytical expression for the
measure was not attempted. Instead, it was estimated using a Monte-Carlo method as
follows:

• Corner map: Apply the Shi-Tomasi detector to the pristine image.

• Loop: For each of the local maxima in the corner map image, find the amount of
noise σ which gives a 10−4 probability of a mismatch using NNDA. This is done by
first initialising σ to, say, 1. Then applying the following:
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– Store histogram: Around each detection, extract a small square of imagery
and apply 500 instances of noise with variance σ2 to it. For each of these
instances, apply the Shi-Tomasi corner detector and store the difference between
the central corner value and the maximum of the neighbouring peaks. When
this difference is greater than zero, the NNDA tracker will produce a false
match.

– Determine false match probability: It is not possible to directly measure
probabilities of around 10−4 accurately with only 500 points. To increase the
number to 105 however would result in an enormous increase in computation
time. Instead, the tail of the distribution is estimated as decreasing with a power
law. The parameters of this tail can be estimated using the Hill’s estimator
[8]. From this model, the probability of false alarm may be more accurately
estimated.

• Update noise variance: Because the false match probability will be monotonically
increasing with σ, a binary search method may be used to find the value giving
the required false match probability of 10−4. Here, a lower and an upper bound
should be stored and the search interval halved, each time through the loop. Due to
statistical fluctuations in the probability estimate, this may result in significant errors
in the resulting noise estimate, but for this report, no fast alternative immediately
suggested itself.

To reduce the large amount of computation required, the result in Figure 12 was
obtained for only the first frame of the video, and the false alarm rate was assumed to be
the same for the rest. It can be seen that the NNDA measure is very similar to the original
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detector and the detector based on the noise required to give a 1 in 10, 000 probability of a
false match using the NNDA tracker.
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corner measure result up to a corner detection rate of about 0.6. This indicates that the
statistics of detection are similar whether the noise is applied to the input image or to the
corner map. For higher detection rates, it seems that the original Shi-Tomasi detector did
not have local maxima corresponding to the remaining corners. Since the NNDA measure
is only non-zero where there is a maximum in the original corner detection image, the new
measure becomes noticeably worse.

3.2 The KLT tracker

The KLT (Kanade-Lucas-Tomasi) tracker is based on an image registration algorithm,
first defined by Lucas and Kanade [14]. In this paper, whole images F (x) and G(x),
differing by a translation were matched by minimising the error function

∫ ∫

(F (x) − G(x − d))2dxdy (6)

with respect to the image displacement d. This was solved by assuming that the dis-
placement is small, and using a first order Taylor approximation for the image intensity
to give

Error =

∫ ∫

(F (x) − G(x) + ∇G(x).d)2dxdy

=

∫ ∫

(F (x) − G(x))2dxdy +

[

2

∫ ∫

(F (x) − G(x)∇G(x)dxdy

]

.d

+ dT

[
∫ ∫

∇G(x)∇T G(x)dxdy

]

d

This quadratic equation in the image displacement d will have an easily determined unique
solution, given by the solution to the linear equation

[
∫ ∫

∇G(x)∇T G(x)dxdy

]

d =

[

2

∫ ∫

(G(x) − F (x)∇G(x)dxdy

]

(7)

where the matrix on the left hand side is referred to as the autocovariance matrix A of
the gradient, over a square window.

In order to remove any inaccuracies due to the higher order terms in the Taylor expan-
sion, the procedure was iterated, until the estimate for the image displacement changed
by less than one hundredth of a pixel. The paper also mentioned that the method could
be extended to more general affine transformations, but no specific details were provided.

The Lucas and Kanade registration algorithm was first applied specifically to the prob-
lem of tracking feature points in a report by Tomasi and Kanade [30] in 1991. Here, a
set of feature points are detected in the first frame and a small image chip is extracted
and registered to the subsequent frames using the above registration algorithm. If the
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feature was correctly tracked, then the intensity error (or dissimilarity) given by equation
(6) should be small. If the dissimilarity exceeded a certain threshold, it was assumed that
track of the feature had been lost.

It was recommended, by Tomasi and Kanade, that the set of features in the first
frame be chosen so that they are easiest to track. It was argued the solution would
be least sensitive to noise when the matrix A associated with equation (7) was least
singular, or when the minimum eigenvalue λ2 was largest. The resulting interest point
detector has come to be known as the Shi-Tomasi detector (although it should perhaps be
more properly known as the Kanade-Tomasi detector), which was discussed more fully in
Section 2.2. The complete system, consisting of the initial Shi-Tomasi detector, followed
by translation based registration, and track termination based on dissimilarity, has become
known as the KLT tracker.

Shi and Tomasi [25], published a more publicly available account of the KLT tracker in
1994, and as a result it has become more frequently cited than the earlier report. The main
addition described in this paper is a full description of an extension of the registration
step to a general affine transformation. According to the paper, this allows features to be
tracked accurately for greater lengths of time as the camera view rotates or zooms.

The KLT algorithm has been tested against competing algorithms in a number of
settings. For instance, Barron et al. [1] compares algorithms for solving the optical flow
problem, which is to find the 2D projection of the 3D motion field of a scene, based on
two images of the scene closely separated in time. This is implemented for the KLT by
applying the registration algorithm to each point in the image, as if it were a feature
being tracked. The performance of the algorithm was tested on various types of simulated
imagery for which the true optical flow was known. Of the nine methods tested, by far
the two best methods were the KLT method, and another by Fleet and Jepson [4], based
on local phase information.

3.2.1 Another KLT based corner detector

The Shi-Tomasi detector, described in the previous section, defines corners as being
related to the speed of convergence of the KLT tracker at any given point. This is not
necessarily a useful measure of the ability of the KLT tracker to track, so an alternative
has been considered. In this subsection, an expression is derived for the amount of image
noise required to cause the KLT tracker to fail to track a specified point. The performance
of this metric as a corner detector is also examined.

Suppose an image of pixel intensities gi,j is being tracked to a new noisy image gi,j +
σεi,j , where εi,j is a random variable with zero mean and unit variance. The KLT tracker
will choose the translation (τx, τy) to minimise the error metric

∑

i,j

(gi,j + σεi,j − gi+τx,j+τy
)2.

To simplify calculations, it will be assumed that measures of the error metric at two
different translations are statistically independent. For a given translation, the metric will
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be a sum of i.i.d. random variables, and so can be approximated by a Gaussian, regardless
of the actual distribution of the pixel noise. The mean will be

µτx,τy
=

∑

i,j

(gi,j − gi+τx,j+τy
)2 + N2σ2

where N2 is the number of pixels contributing to the error metric, and the variance can
be shown to be

σ2
τx,τy

= 2N2σ4 + 4
∑

i,j

(gi,j − gi+τx,j+τy
)2σ2.

The probability that the KLT error metric will be smaller for one of the off-centre
pixels, and so will give an incorrect match, will therefore be

∫ ∞

−∞

1√
2πστx,τy

exp

(

− x2

2N2σ2

)



1 −
∏

τi,τj

{

1 − erf

(

x + N2σ2 − µτx,τy√
2σ2

τx,τy

)}



 dx.

This will be a monotonically increasing function of σ, which means that the amount of
noise required to give a specified failure probability can be determined using a binary
search method. Since this method must be repeated for every pixel in an image, it is
computationally infeasible to compute the integral accurately. In the results described in
this report, a 10 point trapezoidal rule has been used as an approximation, with the points

chosen to be equally spaced over the interval x ∈ [0,
min

(τx,τy) 6=(0,0)

∑

i,j(gx,y − gx+τx,y+τy
)].

Figure 13 shows an example of a map of this measure for the first image in the Parafield
fly-over. The corresponding ROC curve shows that the detector still does not appear to
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Figure 13: Plot of a) the noise required to give a 1 in 10, 000 probability of a false match
using the KLT tracker, b) ROC curves comparing the performances of this detector and
others

29



DSTO–TR–1759

perform as well as the Harris detector but, apart from at the highest detection probabilities,
it still performs comparably with some of the better detectors. As shown, it seems to
perform similarly to the Shi-Tomasi detector, which was also a measure of KLT tracker
performance. Possibly the slightly lower performance of the uniqueness based measure is
due to the low accuracy of the approximation to the above integral used in the simulations.

A corner measure derived similarly to the above KLT performance measure has also
been considered by Kaneko and Hori [10]. They report very good detector performance,
although their results have not been replicated for this report.

3.3 Correlation matching and other image measures

The KLT tracker, described in the previous subsection, can be used to follow a point
by searching a small neighbourhood around its predicted position in the next image. A
match is then made to the position which looks most similar to the image in the preceding
frame. The distinguishing feature of the KLT tracker is the choice of dissimilarity measure,
which for two images gi,j and hi,j is given by

C1 =
∑

i,j

(gi,j − hi,j)
2.

This, however, is not the only plausible measure for the difference between two images.
Smith et al. [26] provides a list of a number of such measures which have been frequently
used in the literature. According to them, the most commonly used measure is the “stan-
dard cross-correlation”, given by

C2 =

∑

i,j gi,jhi,j
√

∑

i,j g2
i,j

∑

i,j h2
i,j

. (8)

This differs from the unnormalised version of this formula (which is just the numerator)
that will be used in Subsection 3.3.1 to obtain a measure of uniqueness based on the
difficulty of tracking each point. The other similarity measures collected by Smith et al.
[26] are

C3 =

∑

i,j(gi,j − ḡ)(hi,j − h̄)
√

(
∑

i,j g2
i,j − nḡ2)(

∑

i,j h2
i,j − nh̄2)

C4 =
∑

i,j

(gi,j − hi,j)
2

gi,j + hi,j

C5 =
∑

i,j

{

gi,j log
2gi,j

gi,j + hi,j
+ hi,j log

2hi,j

gi,j + hi,j

}
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where n is the number of points in the images being compared, and ḡ, h̄ are the mean
intensities of the two images. Here C3 is the zero mean cross-correlation, C4 is the χ2 test
for measuring the similarity of two distributions and C5 is known as the Jeffrey divergence,
which measures the similarity of two distributions based on their relative entropy.

Two other similarity measures were also cited by Smith et al. One of these measures
is the Kolmogorov-Smirnov statistic, which is used in non-parametric statistics to test
whether two distributions are identical. The test statistic is basically the maximum abso-
lute deviation between the cumulative distribution functions of the two samples (each im-
age being first converted to a one dimensional density function by scanning along columns).
The final similarity measure provided was the “Earth mover distance” [23] which is the
minimum total amount of intensity movement required to shift one distribution of grey-
levels into the other. For a one dimensional density function, it can be shown that this
metric is the equivalent of the integral of the absolute difference between the cumulative
distribution functions. In two dimensions, the movement distances are measured more
directly and a linear programming problem is solved.

A number of tests of the above similarity metrics were provided by Smith et al. Details
of the tests were not described very thoroughly. Despite this, the results still strongly
indicate two things. Firstly, it seems important to allow sub-pixel displacements of the
interest points. In the paper, a bilinear interpolation step was used to estimate the pixel
grey levels from subpixel displacements, and this step appeared to reduce the false alarm
rate significantly. Secondly, the KLT similarity (along with the “Earth Mover”, the Jeffrey
divergence and the χ2 measures) seem to provide much better tracking performance.

3.3.1 Covariance matching and related corner detectors

As has been a theme throughout this section on tracking, an important property of a
corner point is that it is more easily tracked that other points. This subsection considers
methods for measuring the ability of a given point to be tracked using the covariance as a
measure of similarity of two image chips.

A relatively quick method for computing the ability to track points can be made using a
number of simplifying assumptions. Firstly, each N×N square of imagery can be modelled
as being produced by an N2 dimensional stationary multivariate normal distribution. A
maximum likelihood estimate for the parameters of this distribution can be calculated
using a training set extracted from the first image frame. The covariance of a given image
chip with points from this background distribution will then be a monotonic function of
the Mahalanobis distance of that chip from the mean of the distribution. Figure 14 shows
a map of this Mahalanobis distance for each pixel in the image. As can be seen, this seems
to make a good edge detector, but there is no obvious preference towards corner points.

A measure which has a greater emphasis on corners than that shown in Figure 14 can
be achieved by relaxing the assumption of stationarity. Instead, it can be assumed that
the statistics have a slow spatial variation, so the parameters can be estimated locally
based on a relatively small region about each pixels. This should result in local edges
having a greater relative contribution to the local image distribution. This means that the
Mahalanobis distance associated with these edges should be less, and so the corners would
be emphasised. Because a large number of parameters are estimated based only on local
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Uniqueness based on global Mahalanobis measure
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Figure 14: Uniqueness based on global statistics using a 9 × 9 mask

data, the rank of the estimated covariance matrix will be too low. This can be ameliorated
by the addition of extra training samples which can be simulated by the addition of white
noise of some variance σ2 to the existing samples. This is the same as adding σ2I to the
image covariance matrix. Figure 15 shows maps of the resulting uniqueness measure (over
a local neighbourhood of less than 20 pixels) for a number of different choices for the noise
variance σ2.

The above measure of uniqueness has the deficiency of using the non-parametric Maha-
lanobis distance to measure the uniqueness. It only indicates in an average sense that most
of the neighbouring points are dissimilar from the detected points. An individual local
pixel might still appear very similar (or could even give a stronger response to a matched
filter) without upsetting this average. Perhaps a more accurate measure of uniqueness
would be to determine what level of Gaussian white noise σ2 would be necessary to give a
certain percentage (say one in ten thousand) likelihood of a the covariance tracker produc-
ing a mismatch in the next image frame. That measure of uniqueness can be calculated
using the following steps for each pixel in the image:

• Local self-match score: Extract a small image chip Zi,j centered on the target
pixel, and compute the self-match score Aτx,τy

over a small neighbourhood of trans-
lations about zero. In most cases of interest, this will result in a strong peak at the
origin.

• Self-match score variance: If the next image is a corrupted version of the original
image using additive i.i.d noise of variance σ2, then any value of the match score will
have a variance σ2

A =
∑

i,j Z2
i,jσ

2, and the distribution should be roughly Gaussian.
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Figure 15: Maps of the local uniqueness for various levels of image noise σ2

Although this will now be spatially correlated noise, to simplify computation it is
modelled as uncorrelated.

• Required noise for false match: A false match will occur when a point in the
neighbourhood of the central pixel has a larger match score. This will occur with
probability

α = 1 −
∏

(i,j) 6=(0,0)

erf

(

A0,0 − Ai,j√
2σA

)

.

The right hand side will be monotonically increasing with σ2, so a simple binary
search may be implemented to find the amount of noise which gives the required
false alarm rate α. In some cases, such a σ cannot be found, in which case σ2 should
be made zero.

The noise required for a 1 in 10000 false alarm rate has been calculated for every
pixel in the first Parafield fly-over image. The resulting map is now shown in Figure
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Figure 16: a) Plot of the noise required to produce a false alarm of 1 in 10, 000 in the
covariance tracker. b) ROC curves comparing the performances of the covariance matching
detector and other detectors.
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16. The performance of this detector in finding ground-truthed corners (as described in
Subsection 2.7) is also shown in Figure 16, where it has been compared against the best of
the detectors previously evaluated. The new detector appears to be the best performing up
to a detection probability of about 80 percent, where its performance suddenly collapses.

3.4 Predictive tracking

The tracking algorithms described in the previous subsections all implicitly assume
that the image frames are close enough together so that there is virtually no movement of
corners between frames. The exact position of the corner is then determined by searching
the neighbourhood for similar looking areas of the image. In subsection 3.1, the degree
of similarity is the difference in magnitude of the cornerness of the point. In subsection
3.2, the sum of the squared difference of the pixel intensities is used, while in subsection
3.3, the statistical correlation between the two images is used. Each of these methods will
have some probability of a mis-match. This can be reduced by choosing the features to
track so that this is minimised. Another way to reduce this probability is to decrease the
size of the neighbourhood that is searched for a match. This can be done by increasing
the accuracy with which the position of the corner is estimated in successive frames. This
is the topic of the current subsection.

There are several ways in which the feature motion model can be improved. An
obvious way is to treat each feature independently, and estimate its current velocity and
acceleration. The position of the corner in later frames can then be predicted using either
a constant velocity or constant acceleration model. Both of these models, as well as the
zero velocity case, have been investigated by Tissainayagam and Suter [29]. In this paper,
it was assumed that a number of points were consistently detected in the frames, and that
there were a number of uniformly random detections produced by clutter. Two measures
of tracker performance were then described; the probability of a correct association given
that it was correctly labelled in all previous frames, and the probability of a correct
association given that it was labelled incorrectly in only the last frame. It was found
that for a set of simulated data, that the first probability was highest for the constant
acceleration tracker, but that the second measure was best for the zero velocity tracker.
Some further comparisons were made using a set of real video sequences, each of about
10-50 frames. In all of these experiments, the constant velocity tracker was found to be
best. No useful conclusions concerning the trackers were provided in the paper.

The Kalman filter [9] is probably the most frequently used method in tracking appli-
cations. The primary assumption behind the model is that at any given time, there is a
set of unknown states xk, and that at the next time interval the states will be updated
according to the linear model

xk+1 = Axk + C1n1,k

nk is a vector of uncorrelated Gaussian noise, and C1 is a covariance matrix. Similarly, it
is assumed that there is an observed output relating to the hidden states, given by

zk = Hxk + C2n2,k.
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The matrices A and H as well as the covariance matrices and the observations zk are
assumed to be known constants (although in practice, they could vary). The Kalman
filter equations solve for the unknown states and the covariance of the residual x̂k − xk in
a recursive manner consisting of two steps. The first is a predictive step, which estimates
the state of the system at the next time step given the estimates at the current time.
The second step is a measurement update, which updates the state estimates at the next
time based on the observed measurement at that time. When all of the assumptions of
the model are satisfied, the Kalman filter method eventually converges to a least squares
optimal solution for the state of the system.

For corner tracking applications, a Kalman filter would generally be applied to indi-
vidual features separately. The state model used would be either a constant velocity or
constant acceleration model. The major difference between the Kalman filter predictor
and the constant velocity or constant acceleration trackers discussed earlier is the way in
which the parameters are estimated. The trackers discussed earlier would use either two
or three previous estimates to estimate the current velocity and acceleration of each corner
within an image. This means that any measurement error could produce large errors in
the predictions of the feature positions in the next frame. The Kalman filter however
introduces a smoothing term, to reduce the effects of these fluctuations.

For the application of associating feature points in video sequences, the Kalman filter
model is not entirely accurate. One difference is that when the position of a feature is
measured, the main source of error will be from confusing it with another part of the image.
This labelling error will not, in general, be well represented by a Gaussian distribution.
One method for dealing with this source of noise is to use a particle filter [5]. This works
in a very similar way to a Kalman filter except that instead of representing the residual
error by a covariance matrix, it is represented by a large weighted set of samples from the
estimated error distribution. The update equations are also similar, in that they first have
a prediction step followed by a measurement based update. The state space updates are
performed easily, but the residual distribution update is more difficult. This is because
resampling of the distribution is necessary to maintain the total number of particles. The
positions of the samples making up the new residual distribution are sampled from a user
defined distribution called the importance density. The new weights are then derived from
a separate formula. Choosing the best shape of the density used is apparently of crucial
importance in determining the performance of the filter.

The Kalman and particle filters can also be extended to track multiple features at the
same time. This may be of help in situations where two tracks overlap and it is required to
be certain that the resulting tracks do not merge following the intersection. In this case,
the dimensionality of the state space would be at least 4Nc for tracking Nc corners using
a constant velocity tracker (or 6Nc for a constant acceleration tracker). This means that
for typical structure from motion problems, the size of the state space would be several
thousand. This size makes Kalman filtering for this application somewhat unwieldy. The
number of particles required to accurately represent a residual distribution increases very
rapidly with the number of dimensions, and becomes intractable.

All of the above filters consider each of the features being tracked separately. Usually
however, the motion of different features from frame to frame will be highly correlated. A
simple way to take this into account would be to assume that a set of points in one frame
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could be mapped to the next using some unknown affine transformation. This could be
estimated easily in a least squares sense from the two preceding frames, and then applied
to estimate the feature positions in the next frame. An even more extreme method could
assume a projective transform between frames. In this case, structure from motion code
could be applied to all of the previous frames, to obtain a set of point scatterers in 3D and
a set of camera matrices and feature center of masses. The camera matrix and feature
center of mass could then be estimated in the next frame, and applied to the structure to
produce a set of predicted positions.

3.5 Track termination

The previous subsections have described methods for determining the most likely track
of a feature from one frame to the next. Regardless of the sophistication of the tracker
however, sometimes track on a feature will be lost. This may be due either to intrinsic
properties of the tracker or obscuration of the feature so that it no longer appears in the
image. In either case, it is useful to be able to terminate the track, so that incorrect
information is not used in later processing.

All of the tracking methods described previously rely (perhaps implicitly) on some
measure of similarity between image fragments in consecutive frames. NNDA effectively
uses difference in image corner strength, as measured by some detector, as the indication
of the similarity. The KLT uses mean squared difference in intensity, and a number of
other frequently used similarity methods are described in Subsection 3.3. Therefore, the
easiest method to use in deciding whether a track should terminate would be to use a
threshold on the similarity. One example of this type of track termination condition is
X34, described by Tommassini et al. [31]. Here, if ǫi is the measure of the dissimilarity
between the feature in the ith frame and in the 1st frame, then the track is terminated
when

|ǫk− med
i ǫi| < 5.2

(

med
i

{

|ǫi− med
j ǫj |

})

,

where med is the median. The paper by Tommassini et al. only used X34 in the context
of the KLT detector, so ǫi was the sum of squares of the residual error. The same process
can, however, be applied to the other measures of similarity discussed previously. This
tracking method suffers from the disadvantage that for long image sequences, the shape of
the image fragment is likely to change slowly. This will either cause the track to terminate
early due to a large difference from the first frame, or will cause the mean absolute deviation
estimate to become too large, and the track will be less likely to terminate when it should.
To reduce these problems, some sort of adaptive process should be used which would reset
the first frame used in the calculation every so often.

A different track termination condition was given by Smith et al. [26]. The paper refers
to this as the median flow method, and it is based on the assumption that the motion
flow field from one frame to the next will be continuous. For a given feature that is being
tracked, a set of k neighbouring features are found and the median motion of each of
their motion vectors is found. Since these motions will be 2D vectors, the median cannot
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be computed in a traditional sense. Smith et al. define the median angle, which is the
mean of the most tightly bunched group of n motion angles. The median length is defined
similarly. A track is only continued if a feature’s motion is within a certain threshold of
both the median angle and the median length. The values of k, n and all of the thresholds
need to be chosen by the user. The results given in the paper suggest that this method can
reduce the number of false matches by a factor of two. Due to the limited description of
the experimental technique, it is not certain that the parameters chosen would work well
for all types of data. Also, points on the edges of buildings would have ground points as
neighbours within the image. These two sets of points would move differently. As a result,
although the percentage of false termination of tracks might be small (as reported in the
paper), it might preferentially terminate building edge points. Since these are the points
most of interest for determining structure from motion, the median method may not be
suitable for the problem. A definite recommendation as to the better track termination
condition cannot be made without further tests, and might be a topic for a later report.

4 Fusing corner detectors

Evidently, the different corner formulations presented so far have quite different qual-
ities. All of them preferentially detect corners, but the types of false alarms that are
detected can be quite different. For instance, most corner detectors will preferentially
detect edges, but the Harris detector specifically deemphasises edges. Similarly, intensity
based detectors (Harris, Shi-Tomasi, Kitchen-Rosenfeld, etc) will have a bias towards any
area of the image with a large intensity gradient, whereas rank based detectors (such as
SUSAN) do not. Therefore, it seems sensible that a number of corner detectors could be
combined to reduce the number of false alarms. This section of the report describes some
preliminary work in this area.

One simple method for fusing corner detectors is post-processing, where one set of
models of corners is used to discard points detected using another. The complete imple-
mentation of the SUSAN detector uses this type of processing. The first stage of SUSAN
computes a corner measure, based on finding a set of pixels with approximately the same
intensity as the central pixel (or nucleus). This set of pixels is called the USAN, and is
calculated as described in Subsection 2.3 and tested in Subsection 2.7. The next stage
measures the centroid of the USAN. When the centroid is close to the origin, the corner
angle is relatively large, and the central pixel is more likely to correspond to an edge than
a corner. Therefore a threshold is used here to remove pixels for which the centroid is
sufficiently close to the origin. Smith and Brady’s original paper [27] did not specify how
this threshold is chosen. In this report, it was chosen to maximise the performance for the
first frame of the Parafield fly-over. Following this, some more false alarms are removed
by keeping only the points for which all of the pixels on a straight line, from the nucleus in
the direction of the centroid, belong to the USAN. Figure 17 shows the effect of these post-
processing operations on the performance of the SUSAN detector. The post-processing
operation has also been applied to the Harris detector, without retuning any of the pa-
rameters. The SUSAN detector showed the largest improvement due to post-processing,
although the performance is still not as good as for the standard Harris detector. The
Harris detector also showed some improvement for lower detection rates, but in this case it
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Figure 17: The effect of SUSAN based post-processing on two corner detectors

was probably not worth the extra difficulties in implementation and choosing parameters.

Another method for combining corner detectors is based on supervised classification
techniques. Here, image chips centered on known corners and false alarms are reduced
to feature vectors containing the output from each of the corner detectors. These vectors
are then presented to a classifier, which is trained to find a function of the detectors
which can be used for discriminating corners from non-corners. An example of such
fusion is illustrated in the first diagram of Figure 18, which shows a plot of the output of
the Shi-Tomasi and Harris detectors for two classes of points from the first image frame
in the Parafield sequence. The blue points are background non-corners, while the red
points correspond to manually marked corners, as described in Subsection 2.7. Since these
particular detectors give outputs that can vary by many orders of magnitude, they have
been scaled using the formula

d′ = sign(d) log |d|.

By eye, it can be seen that the corners, in general, seem to be confined to almost a
straight line. Therefore, the line with this direction (0.5317, 1) as the normal should be
able to discriminate corners from non-corners than a line parallel to one of the coordinate
axes. This is confirmed by the curve in the second diagram of Figure 18, which shows
the performance of the combination of Harris and Shi-Tomasi detectors. As expected, it
performs better than either individual detector.

When trying to combine more than two classifiers, it becomes necessary to use auto-
mated methods to discover classification rules. In order to be able to cope with the extreme
variability and skewness in the distribution of the magnitude of most corner detectors, it
was thought that the most suitable classifier should be independent of change of variables
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for each detector, as long as the order is preserved. The decision tree is such a classifier,
but by itself it is not easy to generate a measure of confidence in the prediction which
would be suitable for ROC curve analysis. Therefore, instead of using a single decision
tree, a classifier consisting of an ensemble of decision trees, as described in a previous
report [2], was produced.

The green curve in the second diagram of Figure 18 shows the performance of an
ensemble of decision trees which was used to fuse corner detectors. The curve was obtained
using a base classifier, which was a two level decision tree where, for speed, the cuts were
chosen to be half way between the means of the corner and non-corner distributions. Each
decision tree gave a simple corner/not-corner decision for each point in the training set.
The ensemble method was then applied, which reweighted the training points and obtained
new base classifiers based on the new weights. The final decision was then a weighted sum
of the votes of the individual base classifiers. The reweighting formula and the classifier
weights were obtained using the AdaBoost algorithm. More complicated ensemble methods
exist, but to get a quick result, only this method was tested. Unfortunately, the resulting
fused detector was comparable to the Harris, but shows no obvious advantage to some of
the other detectors. It was thought this may have been due to a lack of training data, so
the result was repeated with data from the first nine frames being used in the training
set. This also did not give an improved result. However, when the ensemble method
was applied only to the Harris and Shi-Tomasi detectors, a similar lack of improvement
was found, which indicates that perhaps the base classifier is not suitable for solving this
particular classification task. Figure 19 shows decision curves obtained by attempt to fuse
the Shi-Tomasi and Harris detectors using AdaBoost with a two node decision tree and
Fisher’s discriminant as base classifiers. Neither automatic classifier fused as well as the
manual linear combination. It seems as though these particular classifiers don’t work very
well when the feature vectors are highly correlated.
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5 Conclusions

This report has summarised a number of corner detection and tracking algorithms
that have been frequently used for structure from motion work. The ability of each of
these corner detectors, as well as several newly developed corner measures, to detect
known corner points in real imagery has also been evaluated. Of the tested standard
corner detectors, the Harris method consistently gave the best performance. It has also
been shown that the performance of the Harris detector can be improved by using a non-
Gaussian weighting function. It has not yet been shown whether this improvement will be
video specific, or if it is more general.

Of the new detectors, the Generalised Hough transform detector and the covariance
tracker based detector appear to have better performance than the Harris detector for a
large percentage of corners. The new detectors are, however, slower to calculate, which
decreases their potential usefulness. Also, the GHT detector needs an edge intensity
threshold to be determined in order to produce good results. It has not yet been de-
termined how this threshold can be calculated automatically. Despite these drawbacks,
these detectors are potential substitutes for the Harris detector in structure from motion
applications.

The effect of fusing corner detectors has also been examined. By examining a scatter
plot, manual fusing of the Shi-Tomasi and Harris detectors was achieved, and the resulting
detector was significantly better than each of the detectors considered singly. A number
of ways to fuse these two detectors automatically using AdaBoost did not work nearly as
well. Automatic fusion of a larger set of 10 corner detectors also resulted in a detector
worse than the Harris detector, even though this was one of the detectors being fused.
This poor performance may be due to the high correlation between the corner detectors,
although more work is needed to establish this for certain, and to produce a work-around
for the problem.

The section on tracking has described a number of ways that a particular pixel can be
matched between image frames. No simulations have been made to evaluate the perfor-
mance of the point trackers, but examination of the literature indicates that the commonly
used KLT tracker is one of the better options. Several subsections have also been devoted
to considering the relationship between tracking algorithms and corner detectors. A mea-
sure of the ease with which a point can be tracked is very similar to a corner detector,
and several specific examples were analysed. The most successful of these was based on
the covariance tracker.

Although this report has provided a great deal of information concerning corner de-
tectors and tracking, there are still numerous avenues of research still unexplored. For
instance, corner models have only been mentioned in passing. The typical model con-
sidered in this report is a sharp corner in a linear edge between two regions of uniform
intensity. Subsection 2.7, described a detector which was trained on such a simulated data
set, and although it improved detection for a significant fraction of corners, the detection
of the remaining true corners became worse. This must be due to a discrepancy between
the actual corners and the corner models. This has not yet been investigated.

There are also areas of further research in the relation between corner tracking and
detection. It has been described how the ease of tracking a given pixel is related to how
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much like a corner it is. The measure of ease of tracking used in this report was to find
the level of white noise required to give a particular false alarm rate. Some simulations
were given for an NNDA tracking example, as well as for the KLT tracker, but these
were based on crude approximations. Finding more accurate measures for these might
result in better corner detectors. Also, a survey on optical flow techniques found that
phase congruency techniques and a match measure based on the earth-mover measure
gave better registration than the KLT tracker. A more detailed look at these tracking
methods, as well as a measure of the ability of these methods to track a given pixel, could
also result in improved corner detection. It is also of interest to examine different ways
of measuring the performance of a tracker, such as setting an image noise level and using
the probability of a false match.

Another area of research, which is only mentioned briefly in the current report, is
corner localisation. This is implicitly assumed to be done by finding the maximum in a
corner map. It is well known however that a good detector (such as the Harris detector)
does not always localise the corner very accurately. For this reason, it might be useful to
have a separate corner localisation step following detection.

Finally, the work on tracking in this report mostly dealt with its relation to corner
detection. The performance of each tracker was compared only implicitly through the
detection rates of the associated corner detectors. Future work might compare the per-
formance of trackers for structure from motion in more detail. This would also allow an
examination of associated areas such as track termination criteria.
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A Genetic algorithm implementation

Genetic Algorithms (GAs) were inspired by Darwinian evolution, which postulated that
the characteristics of animals evolved by beneficial mutations, which increased the fertility
of the animal possessing them. As a result, the new characteristic would spread quickly
to the rest of the population. Similarly, in a GA a population of individuals is described
by a set of genes which undergo mutation and cross-over operations. The particular genes
that are chosen to form the next generation are chosen randomly, but preference is given
to those individuals which produce a larger value of some reward function, which is linked
to the problem to be solved. It is claimed that no two people have implemented the same
genetic algorithm code. For this reason, the exact method of implementation has been
described in this appendix to allow results to be repeated.

One of the first requirements for a genetic algorithm is a genotype (i.e. the represen-
tation of the system parameters to be used by the genetic algorithm for cross-over and
mutation). It is quite common to use binary strings to represent each of the real number
parameters. For these results however, each parameter was represented by a real number.

Once the genotype has been chosen, methods for cross-over and mutation of the geno-
types must be determined. When the genotype consists of binary strings, one or two point
cross-over is usually performed. One point cross-over is where a position in the sequence
is randomly selected, and a new genotype is created using the genotype of the first parent
from before that point, and the genotype of the second afterwards. More frequently used
is two-point cross-over where the first parent provides the genotype between two randomly
chosen positions, and the other parent provides the rest. For this implementation, cross-
over is a simple arithmetic average of two quantities, while the mutation was the addition
of a mean zero random variable. The mutation rate needs to be specially chosen so that,
on the one hand, when the individuals are near the optimum, they are not driven away
by mutation, and on the other, that when the fitness function is flat, the diversity of the
population should increase. For this reason, the mutation variance for a new individual
has been chosen to be proportional to the difference in the genotype v of the two parents,
so

σ2 = β(v1 − v2)
2/4

where β describes the rate of increase in diversity for a flat (on average) reward function.
This value can strongly affect the performance of the genetic algorithm, since a larger
value can help speed the convergence, with the disadvantage of a higher uncertainty in
the final solution. In these simulations, β has been chosen to be 1.2.

The remaining requirements for a genetic algorithm are the reward function, and the
method for choosing parents for the next generation. The reward function will of course
be problem dependent, but it would be useful to have the same convergence behaviour for
the algorithm for any monotonic function of the reward function. As a result, the choice
of parents from the population will be made with a probability which is dependent only
on the order after they have been ranked.

The literature on genetic algorithms describes a number of ways to define the parent-
hood probability as a function or rank. The linear function
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pi =
1 − αi

N − αN(N + 1)/2
(A-1)

is frequently chosen, where α is a constant between 0 and 1. Rather than just using this
function blindly, it was investigated whether a better function was available. This is also
a stochastic optimisation problem, which can be solved using a GA where the reward
function is based on the output of another genetic algorithm. In this case, the GA in the
outer loop would be updating a population of probabilities (which for a colony size of 100
would be a vector of 100 positive real numbers summing to one). Since the optimal rank
probabilities are not known in advance for this outer loop, the above linear function with
α = 0.01 was used. The inner GA then uses the probabilities described by the genotype
in the outer GA to solve a simple 1D optimisation problem. This 1D problem used a
quadratic function with additive white noise as the reward function, and the inner GA
was run for 10 iterations. The mean error between the known optimum position and the
position of each individual in the population was then used as a reward function for the
outer GA.

When the outer GA was iterated 100 times, the resulting solution for the probabilities
versus rank was quite noisy. This is obviously due to the fact that each of the individual
quantities can vary significantly, without strongly affecting the convergence of the GA. A
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Figure A-1: Calculation using monotonic piecewise linear constraints of best rank vs
selection probabilities for a GA solving a 1D problem.

47



DSTO–TR–1759

more accurate function could be achieved after many more iterations, or by using extra
constraints such as continuity or monotonicity. Therefore, to reduce the variance, the
selection function was modelled again using a continuous monotonic piecewise function
consisting of seven linear segments. This reduced the number of parameters from 100 to
9 (the positions of all of the tie points but one were specified). The resulting selection
probabilities are now shown in Figure A-1.

This selection function almost completely ignores the lower rated members of the
population. This is presumably because the problem is only one dimensional, so a very
small population contains sufficient diversity to be able to solve the problem. To test this,
the dimensionality of the problem solved by the inner GA was increased to 20, and the
outer GA was restarted. The resulting set of new weights is shown in Figure A-2 where, as
expected, the selection weighting does not drop quite so rapidly, so lower rated individuals
are more highly valued. It seems that equation (A-1) might still be used, with a value of α
which is proportional to the dimensionality of the problem. To test this hypothesis more
carefully however, a larger number of different types problem would need to be considered.

The final consideration for a genetic algorithm is how to replace existing individuals.
While more complicated systems (such as tournaments) may be used to decide which
individuals to dispose of, the implementation here is based on generations, where all of
the members in the previous generation are replaced by new individuals. An exception
has been made in the case of the fittest individual which is retained unchanged between
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Figure A-2: Calculation using monotonic piecewise linear constraints of best rank vs
selection probabilities for a GA solving a 20 dimensional problem.
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generations. This is because sometimes the global maximum can lie on a peak with a very
small domain, and if one of the individuals from one generation lands here, there might
still be very little chance that any of its offspring would belong to the same peak.
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